Alan Brantley me 104 | winter '21

Project 3 | Mission: Improbable

Summary Report

Alan Brantley

Description and Reasoning

Characterizing Motor and Gearbox

To characterize the motor and gearbox, I conducted three experiments from which I would use to calculate my values. I performed a no-load test, a stall test, and a speed test. Each test was performed at various voltages in .5 Volt intervals and allowed for several seconds between steps.

I calculated R first using data from the stall test. To calculate k, I first found the angular velocity. For this experiment, I used the single-arm servo horn and recorded the motor in slow motion at various speeds. Using these data, I calculated k for $3 \le V \le 6$ and took an average.

Given k, I calculated T_{fric}, which in turn allowed me to calculate Tload at various voltages.

Choosing Values

I choose the values of V, $R_{\rm g}$, and $C_{\rm r}$ through a process of iterative experimentation. I tested multiple combinations of gear ratios and capstan radii. In total, I performed lift tests with Gear ratios of 80:1, 25:1, and 20:1 with capstan radii of 7mm, 11mm, 22mm, 24.5mm, and 27.5mm.

I chose $V_{app} = 6V$ because I wanted to lift the payload as fast as possible. In my experiments, the speed with which the payload lifted was directly proportional to the voltage.

I successively tested 80:1, 25:1 with different radii. Each step down resulted in faster times. Finally, I tested at 20:1 with 11mm and 7mm radii.

My fastest time was achieved with a combination of $r_c = 11$ mm with a gear ratio of 20:1.

Estimates:

 $egin{aligned} R_c &= 0.8135 \Omega \ k &= 0.002797 \cdot rac{Nm}{A} \ T_{fric} &= 0.000770 \ N \cdot m \ \eta_{stage} pprox .509 \end{aligned}$

Chosen:

 $egin{aligned} V_{app} &= 6V \ R_g &= 20:1 \ r_{cap} &= 0.011m \end{aligned}$

Experimental:

 $egin{aligned} t_{lift} &= 1.59s \ i_{mot} &= 4.40A \ P_{elec} &= 26.39W \ \eta_{sys} &\approx .21 \ \eta_{mot} &\approx .19 \ \eta_{trans} &\approx .398 \end{aligned}$

Power and Efficiency

I calculated system power and efficiencies using data collected in my lift experiment and calculated values. During my lift test, I measured current and voltage to find P_{elec} . I calculated system efficiency by taking the ratio of $P_{\text{out}} = Fd/t_{\text{lift}}$ with P_{elec} . Next, I calculated P_{mech} over P_{elec} for motor efficiency. Finally, I calculated transmission efficiency by taking the ratio of the power delivered to the capstan and the power from the motor.

Motor Mount

Alan Brantley me 104 | winter '21

Motor and Gearbox Characterization

Table 1	Measured	Calculated							
V_{app}	i nl	İstall	i @6V	rev/s	Rc	ė,	Ġո	k	T_{fric}
	no load test	stall test	speed to	est 25:1					
1	.18	1.24			0.806				
1.5	.19	1.70			0.882				
2	.20	2.40			0.833				
2.5	.21	3.60			0.694				
3	.22	3.47	1.32	6	0.864	37.70	942.50	0.00307	0.000615
3.5	.24	4.20	1.33	8.5	0.830	53.41	1335.50	0.00254	0.000671
4	.27	4.60	1.37	9.5	0.870	59.69	1492.25	0.00261	0.000755
4.5	.31	5.36	1.38	10	0.840	62.83	1570.75	0.00280	0.000867
5	.25	7.00	1.39	11.5	0.714	72.26	1806.50	0.00271	0.000699
5.5	.27	7.36	1.43	12	0.747	75.40	1885.00	0.00287	0.000755
6	.28	6.90	1.45	12.5	0.869	78.54	1936.50	0.00300	0.000783

Resistance, R_c :

$$egin{aligned} i_{Stall} &= rac{1}{R} V_{app} \ R_c &= rac{1}{i_{stall}} V_{app} &= 0.8135 \Omega \end{aligned}$$

Average of **R**_c values calculated in **table 1** with data from the **stall test**.

Motor constant, k:

$$egin{aligned} T_{em} &= k \cdot \dot{ heta_m} \ V_{app} &= V_{em} + iR \ k &= rac{V_{app} - iR}{ heta_m} \ &= 0.002797N \cdot m \end{aligned}$$

Average of **k** values calculated in **table 1** with data gathered from the **speed test**. Note that while the speed test was conducted at 25:1, my final test setup used a 20:1 gear ratio.

Motor friction torque, au_{fric}

$$T_{em} = ki$$
 $T_{load} = T_{em} - T_{fric}$

When $T_{load} = 0$,

$$T_{fric} = T_{em} \ = k \cdot i_{nl} \ = 0.000770 \ N \cdot m$$

Per-stage efficiency, η_{stage}

$$T_{in} \cdot GR \cdot \eta = T_{out}$$

$$\eta_{stage} = \sqrt{\eta_{gearbox}} = \sqrt{\frac{T_{out}}{T_{in} \cdot GR}} = \sqrt{\frac{mgr_{capstan}}{T_{load} \cdot GR}}$$

$$= \sqrt{\frac{8.96N \cdot 0.011m}{0.0190Nm \cdot 20}} \approx .509$$

Where the gear ratio is 20:1, r_c = 0.011 m, and T_{load} is measured at V_{app} = 6V (table 2). The square root comes from the fact that there are two stages.

Average of T_{fric} values calculated in **table 1** using k and data obtained during the no load test.

Table 2

| Vapp |
$$\dot{\Theta}_{m-20:1}$$
 (rad/s) | T_{load} (Nm)
| 3 | 47.125 | 0.00909
| 3.5 | 66.775 | 0.0106
| 4 | 74.613 | 0.0122
| 4.5 | 78.538 | 0.0139
| 5 | 90.325 | 0.0155
| 5.5 | 94.250 | 0.0172
| 6 | 96.825 | 0.0190

Alan Brantley me 104 | winter '21

Power and Efficiency Calculations

Electrical power, P_{elec}

$$P_{elec}=iV_{app-lift}=4.40A(6V)=26.39W$$

These values were measured during the lift test. *i* was calculated using the average of the readable currents during lifting.

Table 2

$V_{\rm app}$	Ġ _{m-20:1} (rad/s)	T _{load} (Nm)
	-	-
3	47.125	0.00909
3.5	66.775	0.0106
4	74.613	0.0122
4.5	78.538	0.0139
5	90.325	0.0155
5.5	94.250	0.0172
6	96.825	0.0190

System efficiency, η_{sys} :

$$\eta_{sys}=rac{P_{out}}{P_{in}}=rac{P_{GB}}{P_{elec}}=rac{5.595W}{26.39W}pprox0.21$$

Where $P_{GB} = Fd/t_{lift}$ and P_{elec} is calculated above.

Motor efficiency, η_{motor} :

$$egin{aligned} P_{mech} &= (rac{k}{R} \cdot V_{app} - T_{fric}) \dot{ heta_m} - rac{k^2}{R} \dot{ heta_m^2} \ &= 4.89W \end{aligned}$$

$$\eta_{motor} = rac{P_{mech}}{P_{elec}} = rac{4.89W}{26.39W} pprox 0.19$$

Where P_{mech} is calculated at 6V and the velocity is calculated from data gathered during the speed test (table 2) and converted with 20:1 GR.

Transmission efficiency, η_{trans} :

$$\eta_{trans} = rac{T_{out} \cdot heta_{out}}{T_{motor} \cdot heta_{motor}} = rac{F \cdot r_c \cdot heta_{out}}{k \cdot i \cdot heta_{motor}} = rac{8.896N \cdot 0.011m \cdot 96.825 rac{rad}{s}}{0.002797 rac{Nm}{A} \cdot 4.4A \cdot 96.825 rac{rad}{s} \cdot 20} pprox 0.398$$