DUAL VECTOR SPACES, TRACES, AND CYCLICITY OF TRACE

ALAN BRANTLEY

1. Introduction

This paper's purpose is to describe the dual of finite dimensional vector spaces V over an arbitrary field \mathbb{F}. Specifically, the aim is to show that V is finite dimensional, then construct a basis for it, and use this basis to define the trace of a linear map and show that it is independent of the basis chosen. The paper will conclude with a discussion of the cyclic property of traces.

2. DUAL SPACE OF A FINITE DIMENSIONAL VECTOR SPACE

Definition 2.1. Let V be a finite vector space over \mathbb{F}. The dual space of V is the vector space of all linear functionals on V such that $V^{*}=\mathcal{L}(V, \mathbb{F})$

Definition 2.2. If e_{1}, \ldots, e_{n} is a basis of V, then the dual basis of e_{1}, \ldots, e_{n} is the list f_{1}, \ldots, f_{n} of elements of V^{*}, where each f_{j} is the linear functional on V such that $f_{i}\left(e_{j}\right)=1$ if $j=i$ and $f_{i}\left(e_{j}\right)=0$ otherwise.

Next, we'll see that f_{1}, \ldots, f_{n} is also a basis for V^{*}. To see that f_{1}, \ldots, f_{n} is linearly independent in V^{*}, we'll use the fact that only the i element is preserved when the linear map operates on the basis vector e, guaranteeing that all but the i terms will go to zero. And because $f_{i}\left(e_{i}\right)=1$ for the i term, we are left with the scalar a_{i}. We'll then use our knowledge of dimensions of vector spaces and their relations to bases to show that f_{1}, \ldots, f_{n} is a basis for V^{*}

Proposition 2.3. The dual basis is a basis of the dual space $V^{*}=\mathcal{L}(V, \mathbb{F})$
Proof. Suppose V is a finite dimensional vector space over \mathbb{F} and e_{1}, \ldots, e_{n} is a basis in V. Let $a_{1}, \ldots, a_{n} \in \mathbb{F}$ and define $f \in V^{*}$ as

$$
f=a_{1} f_{1}+\ldots+a_{n} f_{n}
$$

and suppose

$$
0=a_{1} f_{1}+\ldots+a_{n} f_{n}
$$

By definition 2.2, $f_{i}\left(e_{i}\right)=\left(a_{1} f_{1}+\cdots+a_{n} f_{n}\right)\left(e_{i}\right)=a_{i} f_{i}\left(e_{i}\right)=a_{i}$ for $i=1, \ldots n$. Setting this to zero as above clearly yields $a_{1}=\ldots=a_{n}=0$, thus showing f_{1}, \ldots, f_{n} is linearly
independent in V^{*}. Also note that the dimension of the dual space V^{*} is equal to the dimension of the original vector space V, i.e. that $\operatorname{dim}\left(V^{*}\right)=\operatorname{dim}(V)=n$. Then f_{1}, \ldots, f_{n} is a basis in V^{*} because every linearly independent list of vectors in V^{*} with length $\operatorname{dim}\left(V^{*}\right)$ is a basis of V^{*}.

3. Traces

Proposition 3.1. The trace of the the linear map $A \in \mathcal{L}(V, V)$, defined as the trace of the matrix of A with respect to some basis e_{1}, \ldots, e_{n}, is independent of the chosen basis

Proof. Suppose V is a finite dimensional vector space over \mathbb{F}. Let e_{1}, \ldots, e_{n} and $e_{1}^{\prime}, \ldots, e_{n}^{\prime}$ be bases for V and let f_{1}, \ldots, f_{n} and $f_{1}^{\prime}, \ldots, f_{n}^{\prime}$ be their corresponding dual bases. Define Trace A as

$$
\operatorname{Tr} A=\sum_{j=1}^{n} f_{j}\left(A e_{j}\right)
$$

and note that $f_{j}\left(A e_{j}\right)$ is the $j j$ entry on the matrix of A and that the trace is the sum of the diagonal entries of the matrix associated with A and the basis e_{1}, \ldots, e_{n}. Let

$$
\begin{array}{r}
T=\mathcal{M}(I) \\
M=\mathcal{M}\left(A e_{j}\right) \\
M^{\prime}=\mathcal{M}\left(A e_{j}^{\prime}\right)
\end{array}
$$

where I is the identity matrix with respect to bases e_{1}, \ldots, e_{n} and $e_{1}^{\prime}, \ldots, e_{n}^{\prime}$. If we let $M=T^{-1} M^{\prime} T$ by the change of basis formula, then

$$
\begin{aligned}
\sum_{j=1}^{n} f_{j}\left(A e_{j}\right) & =\operatorname{Tr} A \\
& =\operatorname{Tr} M \\
& =\operatorname{Tr} T^{-1} M^{\prime} T \\
& =\sum_{i, j, k}\left(T^{-1}\right)_{i j} M_{j k}^{\prime} T_{k i} \\
& \left.=\sum_{i=1}^{n} \sum_{j, k} M_{j k}^{\prime}\left(T_{k i}\left(T^{-1}\right)_{i j}\right)\right) \\
& =\sum_{j=1}^{n} \sum_{k=1}^{n} M_{j k}^{\prime}\left(T T^{-1}\right)_{k j}
\end{aligned}
$$

$$
\begin{aligned}
& =\sum_{j=1}^{n} \sum_{k=1}^{n} M_{j k}^{\prime} I_{k j} \\
& =\sum_{j=1}^{n} M_{j j}^{\prime} \\
& =\operatorname{Tr} M^{\prime} \\
& =\sum_{j=1}^{n} f_{j}^{\prime}\left(A e_{j}^{\prime}\right)
\end{aligned}
$$

As desired. Hence, there is no need to specify a basis when discussing the trace of a linear operator or it's associated matrix.

Example 3.2. Suppose $A \in \mathcal{L}(V, V)$ and let the list e_{1}, e_{2}, e_{3} be a basis in V with f_{1}, f_{2}, f_{3} as its corresponding dual basis. Show that $\operatorname{Tr} A$ is equal to the sum of the diagonal entries on the matrix of A.

Let $A e_{j}=\sum a_{j k} e_{j}$ be the matrix associated with A and the basis e_{1}, e_{2}, e_{3}. Then

$$
\begin{aligned}
\operatorname{Tr} A & =\sum_{j=1}^{3} f_{j}\left(A e_{j}\right) \\
& =\left[f_{1}, f_{2}, f_{3}\right]\left[\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{array}\right]\left[\begin{array}{l}
e_{1} \\
e_{2} \\
e_{3}
\end{array}\right] \\
& =\left[f_{1}, f_{2}, f_{3}\right]\left[\begin{array}{l}
a_{11} e_{1}+a_{12} e_{2}+a_{13} e_{3} \\
a_{21} e_{1}+a_{22} e_{2}+a_{23} e_{3} \\
a_{31} e_{1}+a_{32} e_{2}+a_{33} e_{3}
\end{array}\right] \\
& =f_{1}\left(a_{11} e_{1}+a_{12} e_{2}+a_{13} e_{3}\right)+f_{2}\left(a_{21} e_{1}+a_{22} e_{2}+a_{23} e_{3}\right)+f_{3}\left(a_{31} e_{1}+a_{32} e_{2}+a_{33} e_{3}\right) \\
& =f_{1}\left(a_{11} e_{1}\right)+0+0+0+f_{2}\left(a_{22} e_{2}\right)+0+0+0+f_{3}\left(a_{33} e_{3}\right) \\
& =a_{11} f_{1} e_{1}+a_{22} f_{2} e_{2}+a_{33} f_{3} e_{3} \\
& =a_{11}+a_{22}+a_{33}
\end{aligned}
$$

as desired.

The next result follows from 3.1 and greatly simplifies our definition of trace. Because all of the non- $j j$ entries on the matrix associated with A go to zero, the next definition says that, given any square matrix, we can ignore all but the $j j$ entries and simply take the sum of the main diagonal without referring to any basis.

Definition 3.3. Given any square matrix A, the trace of A is the sum of the entries on the main diagonal. i.e.

$$
\operatorname{Tr} A=\sum_{j=1}^{n} a_{j j}=a_{11}+a_{22}+\ldots+a_{n n}
$$

where $a_{j j}$ denotes the entry on the j th row and $j t h$ column of A.
Example 3.4. Given an $n \times n$ identity matrix I, show that $\operatorname{Tr} I=n$ when $n=3$. I.e., show that the diagonals of the 3×3 identity matrix add up to n.

$$
\begin{aligned}
\operatorname{Tr} I & =\sum_{j=1}^{3} i_{j j} \\
& =1+1+1 \\
& =3
\end{aligned}
$$

which is equal to n as desired.
Example 3.5. Let $A=\left[\begin{array}{ccc}6 & 13 & 2 \\ 2 & 1 & 0 \\ 4 & 9 & 3\end{array}\right]$ and define $\operatorname{Tr} A=\sum_{j=1}^{n} a_{j j}$. Then

$$
\begin{aligned}
\operatorname{Tr} A & =\sum_{j=1}^{3} a_{j j} \\
& =6+1+3 \\
& =10
\end{aligned}
$$

Next we will prove the cyclicty of trace using the definition of matrix multiplication.
Proposition 3.6. The property that $\operatorname{Tr}(A B)=\operatorname{Tr}(B A)$ for all $A, B \in \mathcal{L}(V, V)$ is called the cyclicity of trace.

$$
\begin{aligned}
\operatorname{Tr}(A B) & =\sum_{i=1}^{n}(A B)_{i i} \\
& =\sum_{i=1}^{n} \sum_{j=1}^{n} a_{i j} b_{j i} \\
& =\sum_{j=1}^{n} \sum_{i=1}^{n} b_{i j} a_{i j} \\
& =\sum_{j=1}^{n}(B A)_{j j} \\
& =\operatorname{Tr}(B A)
\end{aligned}
$$

