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ALAN BRANTLEY

1. Introduction

The purpose of this paper is to look the rearrangement infinite series and the properties

of the new resulting series. Specifically, we will decompose infinite series into positive and

negative components and see that if we consider the supremum of finite sets over N, the

order of the terms in the sequence doesn’t matter. We’ll then see that finite sums converge

to finite values when both positive and negative portions are finite, that they converge to

infinity or negative infinity when one sum is finite, and to any real value when both sums

are infinite. We will conclude with a discussion of double summation and an examination of

some of their properties.

2. Definition of Rearrangement

Definition 2.1. Let (bn) be a sequence. An infinite series is a formal expression of the form

∞∑
n=1

bn = b1 + b2 + b3 + · · · .

We define the corresponding sequence of partial sums (sm) by

sm = b1 + b2 + b3 + · · ·+ bm,

and say that the series
∑∞

n=1 bn converges to B if the sequence (sm) converges to B. In this

case we write
∑∞

n=1 bn = B.

A rearrangement of a series is determined by using the same terms, but changing the order

in which these terms occur.

Definition 2.2. Let
∑∞

n=1 bn be a series. A series
∑∞

n=1 bn is called a rearrangement of∑∞
n=1 an if there exists a one-to-one, onto function such that bf(n) = bn for all n ∈ N

Example 2.3. Consider the alternating harmonic series

Sb =
∞∑
n=1

bn =
∞∑
n=1

(−1)n−1

n
= 1− 1

2
+

1

3
− 1

4
+

1

5
+ · · · .

1
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Letting Sa =
∑∞

n=1 an be a rearrangement of
∑∞

n=1 bn such that there are two negative

terms for each positive term gives the series

Sa = 1− 1

2
− 1

4
+

1

3
− 1

6
− 1

8
+

1

5
− 1

10

= (1− 1

2
)− 1

4
+ (

1

3
− 1

6
)− 1

8
+ (

1

5
− 1

10
)

=
1

2
− 1

4
+

1

6
− 1

8
+

1

10
+ · · ·

=
1

2
[1− 1

2
+

1

3
− 1

4
+

1

5
− 1

6
+ · · · ]

=
1

2
Sb

So we see that the sum of the rearranged series is equal to one half the original S. In fact,

it is well known that the alternating harmonic series converges to ln 2, so this particular

arrangement of terms is equal to 1
2

ln 2. So we can see that the terms in an infinite series

are not commutative.

Let’s look at a similar rearrangement. Let

Sc =
∞∑
n=1

cn = 1 +
1

3
− 1

2
+

1

5
+

1

7
− 1

4
+

1

9
+

1

11
+ · · ·

We can use our previous result to prove that Sc = 3
2
Sb

3

2
Sb = Sb +

1

2
Sb

= [1− 1

2
+

1

3
− 1

4
+

1

5
− 1

6
+ · · · ] +

1

2
[1− 1

2
+

1

3
− 1

4
+

1

5
− 1

6
+ · · · ]

= [1− 1

2
+

1

3
− 1

4
+

1

5
− 1

6
+ · · · ] + [

1

2
− 1

4
+

1

6
− 1

8
+

1

10
+ · · · ]

= 1− 1

2
+

1

2
+

1

3
− 1

4
− 1

4
+

1

5
− 1

6
+

1

6
+

1

7
− 1

8
− 1

8
+ · · ·

= 1 +
1

3
− 1

2
+

1

5
+

1

7
− 1

4
+

1

9
+

1

11
+ · · ·

= Sc

as desired.
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3. Rearrangement of series with non-negative entries

Proposition 3.1. If all the elements bn ≥ 0, then

∞∑
n=1

bn = sup
N⊂N

∑
i∈N

bi

where the supremum is taken over all subsets of N = {1, 2, 3, · · · }

Proof. By definition of a convergent series

∞∑
i=1

bi = lim
n→∞

∑
i∈(1,...,n)

bi = lim
n→∞

Bn

We’re given that bn ≥ 0, so B is increasing. Then

limBn = supBn

We want to show that sup{Bn} = sup{S}. Let S =
∑

i∈N bi such that N ∈ N is finite.

Then sup{Bn} ≤ sup{S} because Bn ∈ S. Now, for each x ∈ S, there exists a Bn with

Bn ≥ x because x =
∑

i∈N bi where N is finite. Let n = maxN so N ⊂ {1, . . . , n}. Then

Bn ≥ x since bi ≥ 0 which implies sup{Bn} ≥ sup{S}. Thus sup{Bn} = sup{S} as

desired. �

Corollary 3.2. Any rearrangement of the series (3.1) converges to the same (possibly infi-

nite) limit

Proof. Let
∑∞

n=1 an be a rearrangement of
∑∞

n=1 bn. Then by definition, σ : N → N and

bn = bσ(i). i.e., a bijective function. By 3.2 we can say

∞∑
i=1

bσ(i) = sup
N⊂N

∑
i∈N

bσ(i)

= sup
N⊂N

∑
i∈σ(N)

bi

= sup
N⊂N

∑
i∈N

bi

=
∞∑
i=1

bi

As desired. The first equality is given by 3.1. The second is because σ is bijective, meaning

σ−1 exists, allowing us to take the supremum over i ∈ σ(N). The third equality is allowed

because rearranging finite sets does not change the sum and the final equality gives us our

result by 3.1. �
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4. Rearrangement of series with mixed signs

Definition 4.1. Given a real number b, define its positive part b+ = max(b, 0) and define

its negative part b− = max(−b, 0).

Lemma 4.2. Show b = b+ − b−.

b = b− 0

= max(b, 0)−max(−b, 0)

= b+ − b−

Definition 4.3. Given a series
∑∞

n=1 bn define S+ =
∑∞

n=1 b
+
n and S− =

∑∞
n=1 b

−
n .

Theorem 4.4. If S+ and S− are both finite, then
∑∞

n=1 bn = S+ − S−.

Proof. Let S+ and S− both be finite. By applying 4.2, series properties, and 4.3 we can

easily see that

∞∑
i=1

bn =
∞∑
i=1

(b+n − b−n )

=
∞∑
i=1

b+n −
∞∑
i=1

b−n

= S+ − S−

�

Definition 4.5. A series
∑∞

n=1 bn is said to be absolutely convergent if
∑∞

n=1 |bn| is finite.

Proposition 4.6.
∑∞

n=1 bn is absolutely convergent if, and only if, S+ and S− are both finite

Proof. ( =⇒ )
∑∞

n=1 bn is absolutely convergent when S+ and S− are both finite.

We want to show that
∑∞

n=1 |bn| is finite. Let S+ and S− both be finite. By 4.4,

S+ − S− =
∞∑
n=1

bn

Taking |bn| means bn ≥ 0 for all n ∈ N. Then

∞∑
n=1

|bn| = sup
N⊂N

∑
i∈N

bi

which implies that
∑∞

n=1 |bn| is finite as desired.
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(⇐= ) S+ and S− are both finite when
∑∞

n=1 bn is absolutely convergent.

Assume
∑∞

n=1 bn converges absolutely. Then
∑∞

n=1 |bn| is finite. Since |bn| means bn ≥ 0

for all n

∞∑
n=1

|bn| = sup
N⊂N

∑
i∈N

bi

implies S exists and is finite. Now,

S = S+ − S−

=
∞∑
i=1

b+i −
∞∑
i=1

b−i

Again using 3.1, we observe that b+n ≥ 0 and b−n ≥ 0 we see that

∞∑
i=1

b+i = sup
N⊂N

∑
i∈N

b+i

= supS+

and
∞∑
i=1

b−i = sup
N⊂N

∑
i∈N

b−i

= supS−

implies S+ and S− are both finite as desired.

�

Corollary 4.7 (Corollary to Theorem 4.4). Let
∑∞

n=1 bn be a series in which S+ or S− is

finite. Then any rearrangement of this series converges to the same limit.

Proof. Assume if S+ is infinite while S− is finite, then
∑∞

n=1 bn =∞; if S+ is finite while S−

is infinite, then
∑∞

n=1 bn = −∞ and let
∑∞

n=1 an be a rearrangement of
∑∞

n=1 bn.

∞∑
i=1

an =
∞∑
i=1

(a+n − a−n )

=
∞∑
i=1

a+n −
∞∑
i=1

a−n
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=
∞∑
i=1

b+f(n) −
∞∑
i=1

b−f(n)

=
∞∑
i=1

b+n −
∞∑
i=1

b−n

= S+ − S−

In the case that S+ is infinite and S− finite we get

∞∑
i=1

an =∞− S−

=∞

Because the sum or difference of any finite term with∞ is∞. Conversely, when S+ is finite

while S− infinite we get

∞∑
i=1

an = S+ −∞

= −∞

as desired �

Example 4.8. Compute S+, S− and
∑∞

n=1 bn and verify the S = S+ − S−.

Let S =
∑
bn be an alternating geometric series of the form

∞∑
n=0

(−1)narn = a− ar + ar2 − ar3 + · · ·+ arn − arn+1 + · · ·

where a is the first term and r is the common ratio and a 6= 0. The lovely advantage of the

geometric series is that we have a formula for the sums given that we know the values of a

and r. The geometric series converges to S = a
1−r when a = 1 and S = a(1−r

n

1−r ) when a 6= 1

if and only if 0 < |r| < 1.

Consider bn when a = 1 and r = 1
2

∞∑
n=1

bn =
∞∑
n=0

(−1)n(
1

2
)

= 1− 1

2
+

1

4
− 1

8
+

1

16
− 1

32
+

1

64
− 1

128
+ · · ·+ (−1

2
)n

=
1

1− 1
2
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= 2

Now,

S+ =
∞∑
i=1

b+n = 1 +
1

4
+

1

16
+

1

64
+ · · ·+ 1

22n

is a geometric series with a = 1 and r = 1
4

so

S+ =
1

1− 1
4

=
4

3

and

S− =
∞∑
i=1

b−n = −1

2
− 1

8
− 1

32
− 1

128
− · · · − 1

22n+1

is a geometric series with a = −1
2

and r = 1
4

which gives the sum

S− = −1

2
[
1− (1

4
)n

1− 1
4

]

= −2

3
[1− 2

4n
]

=
2

(3)4n
− 2

3

Where taking the limit of both sides clearly gives

limn→∞S
− = S− = −2

3
Then

S = S+ − S−

=
4

3
− (−2

3
)

= 2

as desired

We’ve seen what happens in the case where both S+ and S−arefiniteandthecasewhereeitherS+

or S−isfinite.Whataboutwhenbothsumsarefinite?Wewillseethatinthispeculiarcase, wecanshowthatthereisarearrangementforanyrealnumberprovidedtheassociatedsequenceconvergesto0

Theorem 4.9. Let
∑∞

n=1 bn be a series such that S+ and S− are both infinite and limn→∞ bn =

0. Given any number β ∈ R prove that there is a rearrangement of the series that converges

to β.

Proof. This proof is a constructive algorithm in which a process will be described and qual-

itatively and demonstrated in the following example. Let
∑∞

n=1 bn be a series such that S+
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and S− are both infinite and limn→∞ bn = 0, and let
∑∞

n=1 an be a rearrangement of
∑∞

n=1 bn
∞∑
n=1

an =
∞∑
n=1

a+n +
∞∑
n=1

a−n

In words, this algorithm will add successive positive terms until until the partial sum is

greater than β, after which it will add successive negative terms until the partial sum is

below β. Since S+ and S− are unbounded, we can repeat this process indefinitely until the

series converges to any limit we choose, so long as the (an)→ 0. �

Example 4.10. Show that the series
∑∞

n=1
(−1)n−1

n
satisfies S+ =∞ and S− =∞. Applying

your algorithm in the proof of Theorem 4.9, give the first 15 terms of the rearrangement.

let
∑∞

n=1 an be a rearrangement of
∑∞

n=1 bn, β = 1 and S+, S− be finite. Applying 4.9

gives

∞∑
n=1

an = 1 +
1

3
− 1

2
+

1

5
− 1

4
+

1

7
+

1

9
− 1

6
+

1

11
+

1

13
− 1

8
− 1

10
− 1

12
+

1

15
− 1

14
+ · · ·

which tends toward 1 as desired.

5. Double summations

Example 5.1. The example in §2.1 discusses the dangerous ambiguity in defining
∑∞

i,j=1 aij

as a double summation over two indexed variables where aij = 1
2j−1 if j > i, aij = −1 if

j = 1, and aij = 0 if j < i. It turns out that

∞∑
i,j=1

aij =
∞∑
i=1

(
∞∑
j=1

aij) =
∞∑
i=1

(0) = 0

While
∞∑

i,j=1

aij =
∞∑
j=1

(
∞∑
i=1

aij) =
∞∑
j=1

(
−1

2j−1
) = −2

demonstrating that order matters and we must develop a more rigorous understanding of

double summations.

Theorem 5.2. Let {aij : i, j ∈ N} be a doubly indexed array of real numbers. If

S+ =
∞∑
i=1

∞∑
j=1

a+ij, S− =
∞∑
i=1

∞∑
j=1

a−ij

are both finite, then both
∑∞

i=1

∑∞
j=1 aij and

∑∞
j=1

∑∞
i=1 aij converge to the same value A.

Moreover,

lim
n→∞

snn = A,

where snn =
∑n

i=1

∑n
j=1 aij.
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Proof. We want to show S =
∑∞

i=1

∑∞
j=1 aij. We are given that S+ and S− are finite.

S =
∑∞

j=1

∑∞
i=1 aij = S+ − S− by 4.4. Then

A = S+ − S−

=
∞∑
i=1

∞∑
j=1

a+ij −
∞∑
i=1

∞∑
j=1

a−ij

Since S+ is finite (and making a parallel argument for S−),
∑∞

i=1

∑∞
j=1 a

+
ij < ∞ and∑∞

j=1

∑∞
i=1 a

+
ij <∞ so we can say

=
∞∑
i=1

∞∑
j=1

(a+ij − a−ij)

=
∞∑
i=1

∞∑
j=1

aij

As desired. Moreover, S+ and S− finite means
∑∞

i=1

∑∞
j=1 aij is absolutely convergent so∑∞

i=1

∑∞
j=1 |aij| is finite which implies limn→∞ snn = A

�
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